國立澎湖科技大學九十八學年度研究所入學考試試題

科目:通訊系統

一作答注意事項—

考試時間:100分鐘

作答方式:請用黑色或藍色筆在「答案卷」上作答

祝考試順利

國立澎湖科技大學 98 學年度研究所入學考試試題 電資研究所

科目:通訊系統

- Plot the block diagram of communication systems. What is the goal of communication systems? (15%)
- 2. What is modulation?

Write the techniques of modulation (including analog and digital modulation). (15%)

3. Write transmission bandwidth B and transmission frequency range of linear modulation as below. The frequency of baseband signal is $f_m = 100$ Hz, the frequency of carrier signal is $f_c = 2000$ Hz, and the frequency of residual bandwidth is $\beta = 20$ Hz.(20%)

Modulation Method	transmission bandwidth B	transmission frequency range
AM		~
DSB		110 ~
USSB		~
LSSB		~
VSB		

4. Given a band-pass signal, x(t), with its Fourier transform, X(f), as shown in Fig. P-4.

Fig. P-4

a. Show graphically that the minimum allowable sampling frequency, $f_{s,\min}$,

for the band-pass signal, X(f). (5 points)

b. What is "aliasing effect." (5 points)

- 5. Consider a binary FSK transmission system that transmits $s_1(t) = \cos(2\pi f_1 t)$ or $s_2(t) = \cos(2\pi f_2 t)$ in time interval $0 \le t \le T$. The binary bits, $s_1(t)$ and $s_2(t)$, are transmitted over an additive white Gaussian noise channel with zero mean and two-sided power spectral density $N_0/2$ Watt/Hz.
 - a. Find cross-correlation of $s_1(t)$ and $s_2(t)$, γ_{12} . (5 points)
 - b. Select proper frequency spacing $\Delta f = f_1 f_2$, that makes $s_1(t)$ and $s_2(t)$ orthogonal in the interval $0 \le t \le T$. (5 points)
 - c. Design a receiver that can minimize the average bit-error probability, P_E . (10 points)
- 6. Consider an FM modulator with frequency-deviation constant f_d , expressed in hertz per unit of input information message, m(t). The output of the FM modulator is $s_{FM}(t)$.
 - a. Express mathematically the FM modulated signal, $s_{FM}(t)$. (5 points)
 - Sketch block diagram for a FM demodulator using "zero-crossing detector."
 (5 points)

Fig. P-6 shows a PAM generator with input signal m(t). The sampled signal $m_{\delta}(t)$ is filtered by a pulse shaping filter h(t). Please derive the PAM signal output, $s_{PAM}(t)$, and its Fourier transform, $S_{PAM}(f)$. (10 points)

Fig. P-6